Search results
Results from the WOW.Com Content Network
It catalyzes the following reaction: ATP = 3′,5′-cyclic AMP + diphosphate. It has key regulatory roles in essentially all cells. [2] It is the most polyphyletic known enzyme: six distinct classes have been described, all catalyzing the same reaction but representing unrelated gene families with no known sequence or structural homology. [3]
Eukaryotic Transcription. Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. [1] Gene transcription occurs in both eukaryotic and prokaryotic cells. Unlike prokaryotic RNA polymerase that initiates the transcription of all ...
This pathway can activate enzymes and regulate gene expression. The activation of preexisting enzymes is a much faster process, whereas regulation of gene expression is much longer and can take up to hours. The cAMP pathway is studied through loss of function (inhibition) and gain of function (increase) of cAMP.
RNA polymerase, assisted by one or more general transcription factors, then selects a transcription start site in the transcription bubble, binds to an initiating NTP and an extending NTP (or a short RNA primer and an extending NTP) complementary to the transcription start site sequence, and catalyzes bond formation to yield an initial RNA product.
DNA replication occurs so, during cell division, each daughter cell contains an accurate copy of the genetic material of the cell. In vivo DNA synthesis ( DNA replication ) is dependent on a complex set of enzymes which have evolved to act during the S phase of the cell cycle, in a concerted fashion.
A capping enzyme (CE) is an enzyme that catalyzes the attachment of the 5' cap to messenger RNA molecules that are in the process of being synthesized in the cell nucleus during the first stages of gene expression. The addition of the cap occurs co-transcriptionally, after the growing RNA molecule contains as little as 25 nucleotides.
An RNA templated transcription-associated recombination process has been described that can protect against DNA damage. [34] During the G1/G0 stages of the cell cycle, cells exhibit assembly of homologous recombination factors at double-strand breaks within actively transcribed regions. It appears that transcription is coupled to repair of DNA ...
The histone methyltransferases are specific to either lysine or arginine. The lysine-specific transferases are further broken down into whether or not they have a SET domain or a non-SET domain. These domains specify exactly how the enzyme catalyzes the transfer of the methyl from SAM to the transfer protein and further to the histone residue. [12]