Search results
Results from the WOW.Com Content Network
Nodal analysis is essentially a systematic application of Kirchhoff's current law (KCL) for circuit analysis. Similarly, mesh analysis is a systematic application of Kirchhoff's voltage law (KVL). Nodal analysis writes an equation at each electrical node specifying that the branch currents incident at a node must sum to zero (using KCL). The ...
The finite point method (FPM) is a meshfree method for solving partial differential equations (PDEs) on scattered distributions of points. The FPM was proposed in the mid-nineties in (Oñate, Idelsohn, Zienkiewicz & Taylor, 1996a), [1] (Oñate, Idelsohn, Zienkiewicz, Taylor & Sacco, 1996b) [2] and (Oñate & Idelsohn, 1998a) [3] with the purpose to facilitate the solution of problems involving ...
Mesh analysis (or the mesh current method) is a circuit analysis method for planar circuits. Planar circuits are circuits that can be drawn on a plane surface with no wires crossing each other. A more general technique, called loop analysis (with the corresponding network variables called loop currents ) can be applied to any circuit, planar or ...
Rank plays the same role in nodal analysis as nullity plays in mesh analysis. That is, it gives the number of node voltage equations required. Rank and nullity are dual concepts and are related by: [ 35 ]
Nodal analysis uses the concept of a node voltage and considers the node voltages to be the unknown variables. [2]: 2-8 - 2-9 For all nodes, except a chosen reference node, the node voltage is defined as the voltage drop from the node to the reference node. Therefore, there are N-1 node voltages for a circuit with N nodes. [2]: 2-10
In numerical analysis, adaptive mesh refinement (AMR) is a method of adapting the accuracy of a solution within certain sensitive or turbulent regions of simulation, dynamically and during the time the solution is being calculated. When solutions are calculated numerically, they are often limited to predetermined quantified grids as in the ...
A coarse mesh may provide an accurate solution if the solution is a constant, so the precision depends on the particular problem instance. One can selectively refine the mesh in areas where the solution gradients are high, thus increasing fidelity there. Accuracy, including interpolated values within an element, depends on the element type and ...
The Crank–Nicolson stencil for a 1D problem. In mathematics, especially the areas of numerical analysis concentrating on the numerical solution of partial differential equations, a stencil is a geometric arrangement of a nodal group that relate to the point of interest by using a numerical approximation routine.