Search results
Results from the WOW.Com Content Network
The weighted mean in this case is: ¯ = ¯ (=), (where the order of the matrix–vector product is not commutative), in terms of the covariance of the weighted mean: ¯ = (=), For example, consider the weighted mean of the point [1 0] with high variance in the second component and [0 1] with high variance in the first component.
In weighted least squares, the definition is often written in matrix notation as =, where r is the vector of residuals, and W is the weight matrix, the inverse of the input (diagonal) covariance matrix of observations.
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().
A weight function is a mathematical device used when performing a sum, integral, or average to give some elements more "weight" or influence on the result than other elements in the same set. The result of this application of a weight function is a weighted sum or weighted average.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]
The triangular distribution has a mean equal to the average of the three parameters: μ = a + b + c 3 {\displaystyle \mu ={\frac {a+b+c}{3}}} which (unlike PERT) places equal emphasis on the extreme values which are usually less-well known than the most likely value, and is therefore less reliable.
The proof for positive p and q is as follows: Define the following function: f : R + → R + =. f is a power function, so it does have a second derivative: f ″ ( x ) = ( q p ) ( q p − 1 ) x q p − 2 {\displaystyle f''(x)=\left({\frac {q}{p}}\right)\left({\frac {q}{p}}-1\right)x^{{\frac {q}{p}}-2}} which is strictly positive within the ...