enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    There exist continuous functions whose Fourier series converges pointwise but not uniformly. [8] However, the Fourier series of a continuous function need not converge pointwise. Perhaps the easiest proof uses the non-boundedness of Dirichlet's kernel in L 1 (T) and the Banach–Steinhaus uniform boundedness principle.

  3. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The theorems proving that a Fourier series is a valid representation of any periodic function (that satisfies the Dirichlet conditions), and informal variations of them that don't specify the convergence conditions, are sometimes referred to generically as Fourier's theorem or the Fourier theorem.

  4. Carleson's theorem - Wikipedia

    en.wikipedia.org/wiki/Carleson's_theorem

    This was disproved by Paul du Bois-Reymond, who showed in 1876 that there is a continuous function whose Fourier series diverges at one point. The almost-everywhere convergence of Fourier series for L 2 functions was postulated by N. N. Luzin , and the problem was known as Luzin's conjecture (up until its proof by Carleson (1966)).

  5. Wiener–Lévy theorem - Wikipedia

    en.wikipedia.org/wiki/Wiener–Lévy_theorem

    Wiener–Lévy theorem is a theorem in Fourier analysis, which states that a function of an absolutely convergent Fourier series has an absolutely convergent Fourier series under some conditions. The theorem was named after Norbert Wiener and Paul Lévy. Norbert Wiener first proved Wiener's 1/f theorem, [1] see Wiener's theorem. It states that ...

  6. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.

  7. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    A version holds for Fourier series as well: if is an integrable function on a bounded interval, then the Fourier coefficients ^ of tend to 0 as . This follows by extending f {\displaystyle f} by zero outside the interval, and then applying the version of the Riemann–Lebesgue lemma on the entire real line.

  8. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.

  9. List of Fourier analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_Fourier_analysis...

    List of Fourier-related transforms; Fourier transform on finite groups; Fractional Fourier transform; Continuous Fourier transform; Fourier operator; Fourier inversion theorem; Sine and cosine transforms; Parseval's theorem; Paley–Wiener theorem; Projection-slice theorem; Frequency spectrum