Search results
Results from the WOW.Com Content Network
In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.
The alternated cubic honeycomb is one of 28 space-filling uniform tessellations in Euclidean 3-space, composed of alternating yellow tetrahedra and red octahedra.. In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.
In the geometry of hyperbolic 3-space, the order-3-infinite hexagonal honeycomb or (6,3,∞ honeycomb) is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,3,∞}. It has infinitely many hexagonal tiling {6,3} around each edge.
If the honeycomb is too worn out, the wax can be reused in a number of ways, including making sheets of comb foundation with a hexagonal pattern. Such foundation sheets allow the bees to build the comb with less effort, and the hexagonal pattern of worker-sized cell bases discourages the bees from building the larger drone cells.
The runcicantellated hexagonal tiling honeycomb or runcitruncated order-6 tetrahedral honeycomb, t 0,2,3 {6,3,3}, has truncated tetrahedron, hexagonal prism, and rhombitrihexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.
The hexagonal comb of the honey bee has been admired and wondered about from ancient times. The first man-made honeycomb, according to Greek mythology, is said to have been manufactured by Daedalus from gold by lost wax casting more than 3000 years ago. [2]
The cantitruncated order-6 dodecahedral honeycomb, t 0,1,2 {5,3,6} has truncated icosidodecahedron, hexagonal tiling, and hexagonal prism facets, with a mirrored sphenoid vertex figure. Runcinated order-6 dodecahedral honeycomb
The rectified order-5 hexagonal tiling honeycomb, t 1 {6,3,5}, has icosahedron and trihexagonal tiling facets, with a pentagonal prism vertex figure. It is similar to the 2D hyperbolic infinite-order square tiling, r{∞,5} with pentagon and apeirogonal faces. All vertices are on the ideal surface.