enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The determinant of a matrix A is commonly denoted det(A), det A, or | A |. Its value characterizes some properties of the matrix and the linear map represented, on a given basis , by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the corresponding linear map is an isomorphism .

  3. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:

  4. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]

  5. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [ 1 ] If A is a differentiable map from the real numbers to n × n matrices, then

  6. Rule of Sarrus - Wikipedia

    en.wikipedia.org/wiki/Rule_of_Sarrus

    In matrix theory, the rule of Sarrus is a mnemonic device for computing the determinant of a matrix named after the French mathematician Pierre Frédéric Sarrus. [ 1 ] Consider a 3 × 3 {\displaystyle 3\times 3} matrix

  7. Cauchy–Binet formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Binet_formula

    If n = m, the case where A and B are square matrices, ([]) = {[]} (a singleton set), so the sum only involves S = [n], and the formula states that det(AB) = det(A)det(B). For m = 0, A and B are empty matrices (but of different shapes if n > 0), as is their product AB ; the summation involves a single term S = Ø, and the formula states 1 = 1 ...

  8. Leibniz formula for determinants - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for...

    In algebra, the Leibniz formula, named in honor of Gottfried Leibniz, expresses the determinant of a square matrix in terms of permutations of the matrix elements. If A {\displaystyle A} is an n × n {\displaystyle n\times n} matrix, where a i j {\displaystyle a_{ij}} is the entry in the i {\displaystyle i} -th row and j {\displaystyle j} -th ...

  9. Cayley–Menger determinant - Wikipedia

    en.wikipedia.org/wiki/Cayley–Menger_determinant

    Except for the final row and column of 1s, the matrix in the second form of this equation is a Euclidean distance matrix. Compare this to the usual formula for the oriented volume of a simplex, namely ! times the determinant of the n x n matrix composed of the n edge vectors , …,. Unlike the Cayley-Menger determinant, the latter matrix ...