enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The convergence of a geometric series can be described depending on the value of a common ratio, see § Convergence of the series and its proof. Grandi's series is an example of a divergent series that can be expressed as 1 − 1 + 1 − 1 + ⋯ {\displaystyle 1-1+1-1+\cdots } , where the initial term is 1 {\displaystyle 1} and the common ratio ...

  3. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    If r < 1, then the series is absolutely convergent. If r > 1, then the series diverges. If r = 1, the ratio test is inconclusive, and the series may converge or diverge. Root test or nth root test. Suppose that the terms of the sequence in question are non-negative. Define r as follows:

  4. Limit comparison test - Wikipedia

    en.wikipedia.org/wiki/Limit_comparison_test

    Geometric (arithmetico-geometric) Harmonic; Alternating; Power; Binomial; Taylor; Convergence tests; ... That is, both series converge or both series diverge. Example

  5. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  6. Divergent series - Wikipedia

    en.wikipedia.org/wiki/Divergent_series

    In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges.

  7. Divergent geometric series - Wikipedia

    en.wikipedia.org/wiki/Divergent_geometric_series

    It is useful to figure out which summation methods produce the geometric series formula for which common ratios. One application for this information is the so-called Borel-Okada principle: If a regular summation method assigns = to / for all in a subset of the complex plane, given certain restrictions on , then the method also gives the analytic continuation of any other function () = = on ...

  8. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Otherwise, any series of real numbers or complex numbers that converges but does not converge absolutely is conditionally convergent. Any conditionally convergent sum of real numbers can be rearranged to yield any other real number as a limit, or to diverge. These claims are the content of the Riemann series theorem. [31] [32] [33]

  9. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    The sum of the reciprocals of all prime numbers diverges; that is: = + + + + + + + = This was proved by Leonhard Euler in 1737, [ 1 ] and strengthens Euclid 's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme 's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series) .