enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adaptive step size - Wikipedia

    en.wikipedia.org/wiki/Adaptive_step_size

    Let us now apply Euler's method again with a different step size to generate a second approximation to y(t n+1). We get a second solution, which we label with a (). Take the new step size to be one half of the original step size, and apply two steps of Euler's method. This second solution is presumably more accurate.

  3. Off-by-one error - Wikipedia

    en.wikipedia.org/wiki/Off-by-one_error

    Off-by-one errors are common in using the C library because it is not consistent with respect to whether one needs to subtract 1 byte – functions like fgets() and strncpy will never write past the length given them (fgets() subtracts 1 itself, and only retrieves (length − 1) bytes), whereas others, like strncat will write past the length given them.

  4. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The long BB step size is the same as a linearized Cauchy step, i.e. the first estimate using a secant-method for the line search (also, for linear problems). The short BB step size is same as a linearized minimum-residual step. BB applies the step sizes upon the forward direction vector for the next iterate, instead of the prior direction ...

  5. Regula falsi - Wikipedia

    en.wikipedia.org/wiki/Regula_falsi

    That problem isn't unique to regula falsi: Other than bisection, all of the numerical equation-solving methods can have a slow-convergence or no-convergence problem under some conditions. Sometimes, Newton's method and the secant method diverge instead of converging – and often do so under the same conditions that slow regula falsi's convergence.

  6. Symmetric mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Symmetric_mean_absolute...

    One supposed problem with SMAPE is that it is not symmetric since over- and under-forecasts are not treated equally. The following example illustrates this by applying the second SMAPE formula: Over-forecasting: A t = 100 and F t = 110 give SMAPE = 4.76%; Under-forecasting: A t = 100 and F t = 90 give SMAPE = 5.26%.

  7. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    In a learning problem, ... function is developed based on a data set of data points. The ... can be tested using cross-validation methods, that split the sample into ...

  8. Generalized minimal residual method - Wikipedia

    en.wikipedia.org/wiki/Generalized_minimal...

    The method approximates the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector. The GMRES method was developed by Yousef Saad and Martin H. Schultz in 1986. [1] It is a generalization and improvement of the MINRES method due to Paige and Saunders in 1975.

  9. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    The optimization version is NP-hard, but can be solved efficiently in practice. [4] The partition problem is a special case of two related problems: In the subset sum problem, the goal is to find a subset of S whose sum is a certain target number T given as input (the partition problem is the special case in which T is half the sum of S).