Search results
Results from the WOW.Com Content Network
The real numbers form a topological group under addition. In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.
In mathematics, topological modular forms (tmf) is the name of a spectrum that describes a generalized cohomology theory.In concrete terms, for any integer n there is a topological space , and these spaces are equipped with certain maps between them, so that for any topological space X, one obtains an abelian group structure on the set of homotopy classes of continuous maps from X to .
A set with a topology is called a topological space. Metric spaces are an important class of topological spaces where a real, non-negative distance, also called a metric, can be defined on pairs of points in the set. Having a metric simplifies many proofs, and many of the most common topological spaces are metric spaces.
This realization of a combinatorial graph as a topological space is sometimes called a topological graph. 3-regular graphs can be considered as generic 1-dimensional CW complexes. Specifically, if X is a 1-dimensional CW complex, the attaching map for a 1-cell is a map from a two-point space to X, : {,}.
In mathematics, a topological group G is a group that is also a topological space such that the group multiplication G × G→G and the inverse operation G→G are continuous maps. Subcategories This category has the following 2 subcategories, out of 2 total.
For n ≥ 2, the noncompact Lie group Sp(n, 1) of isometries of a quaternionic hermitian form of signature (n,1) is a simple Lie group of real rank 1 that has property (T). By Kazhdan's theorem, lattices in this group have property (T).
A connected topological space X is called an Eilenberg–MacLane space of type (,), if it has n-th homotopy group isomorphic to G and all other homotopy groups trivial. Assuming that G is abelian in the case that n > 1 {\displaystyle n>1} , Eilenberg–MacLane spaces of type K ( G , n ) {\displaystyle K(G,n)} always exist, and are all weak ...
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.