Search results
Results from the WOW.Com Content Network
The real numbers form a topological group under addition. In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.
In mathematics, a locally compact group is a topological group G for which the underlying topology is locally compact and Hausdorff. Locally compact groups are important because many examples of groups that arise throughout mathematics are locally compact and such groups have a natural measure called the Haar measure .
A set with a topology is called a topological space. Metric spaces are an important class of topological spaces where a real, non-negative distance, also called a metric, can be defined on pairs of points in the set. Having a metric simplifies many proofs, and many of the most common topological spaces are metric spaces.
The product of two CW complexes can be made into a CW complex. Specifically, if X and Y are CW complexes, then one can form a CW complex X × Y in which each cell is a product of a cell in X and a cell in Y, endowed with the weak topology. The underlying set of X × Y is then the Cartesian product of X and Y, as expected.
A property of points in a topological space is said to be "open" if those points which possess it form an open set. Such conditions often take a common form, and that form can be said to be an open condition ; for example, in metric spaces , one defines an open ball as above, and says that "strict inequality is an open condition".
In mathematics, topological modular forms (tmf) is the name of a spectrum that describes a generalized cohomology theory.In concrete terms, for any integer n there is a topological space , and these spaces are equipped with certain maps between them, so that for any topological space X, one obtains an abelian group structure on the set of homotopy classes of continuous maps from X to .
In mathematics, a topological group G is a group that is also a topological space such that the group multiplication G × G→G and the inverse operation G→G are continuous maps. Subcategories This category has the following 2 subcategories, out of 2 total.
A more complicated example is the calculation of the fundamental group of a genus-n orientable surface S, otherwise known as the genus-n surface group. One can construct S using its standard fundamental polygon. For the first open set A, pick a disk within the center of the polygon. Pick B to be the complement in S of the center point of A.