enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    The above ⁠ ⁠-sphere exists in ⁠ (+) ⁠-dimensional Euclidean space and is an example of an ⁠ ⁠-manifold. The volume form ⁠ ω {\displaystyle \omega } ⁠ of an ⁠ n {\displaystyle n} ⁠ -sphere of radius ⁠ r {\displaystyle r} ⁠ is given by

  3. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    Non-Euclidean geometry is an example of a scientific revolution in the history of science, in which mathematicians and scientists changed the way they viewed their subjects. [24] Some geometers called Lobachevsky the " Copernicus of Geometry" due to the revolutionary character of his work.

  4. List of coordinate charts - Wikipedia

    en.wikipedia.org/wiki/List_of_coordinate_charts

    Sphere S 2: Spherical coordinates. Stereographic chart Central projection chart Axial projection chart Mercator chart. 3-sphere S 3: Polar chart. Stereographic chart Mercator chart. Euclidean spaces: n-dimensional Euclidean space E n: Cartesian chart: Euclidean plane E 2: Bipolar coordinates. Biangular coordinates Two-center bipolar coordinates ...

  5. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).

  6. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  7. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  8. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their ...

  9. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    It can be realized non-degenerately in some non-Euclidean spaces, such as on the surface of a sphere or torus. For example, digon can be realised non-degenerately as a spherical lune . A monogon {1} could also be realised on the sphere as a single point with a great circle through it. [ 7 ]