enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    The A–T pairing is based on two hydrogen bonds, while the C–G pairing is based on three. In both cases, the hydrogen bonds are between the amine and carbonyl groups on the complementary bases. Nucleobases such as adenine, guanine, xanthine , hypoxanthine , purine, 2,6-diaminopurine , and 6,8-diaminopurine may have formed in outer space as ...

  3. Hoogsteen base pair - Wikipedia

    en.wikipedia.org/wiki/Hoogsteen_base_pair

    Ten years after James Watson and Francis Crick published their model of the DNA double helix, [2] Karst Hoogsteen reported [3] a crystal structure of a complex in which analogues of A and T formed a base pair that had a different geometry from that described by Watson and Crick. Similarly, an alternative base-pairing geometry can occur for G ...

  4. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_tertiary...

    Three DNA conformations are believed to be found in nature, A-DNA, B-DNA, and Z-DNA. The "B" form described by James D. Watson and Francis Crick is believed to predominate in cells. [ 2 ] James D. Watson and Francis Crick described this structure as a double helix with a radius of 10 Å and pitch of 34 Å , making one complete turn about its ...

  5. Nucleic acid sequence - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_sequence

    Given the two 10-nucleotide sequences, line them up and compare the differences between them. Calculate the percent difference by taking the number of differences between the DNA bases divided by the total number of nucleotides. In this case there are three differences in the 10 nucleotide sequence. Thus there is a 30% difference.

  6. Nucleic acid secondary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_secondary...

    In molecular biology, two nucleotides on opposite complementary DNA or RNA strands that are connected via hydrogen bonds are called a base pair (often abbreviated bp). In the canonical Watson-Crick base pairing, adenine (A) forms a base pair with thymine (T) and guanine (G) forms one with cytosine (C) in DNA.

  7. Triple-stranded DNA - Wikipedia

    en.wikipedia.org/wiki/Triple-stranded_DNA

    Triple-stranded DNA (also known as H-DNA or Triplex-DNA) is a DNA structure in which three oligonucleotides wind around each other and form a triple helix. In triple-stranded DNA, the third strand binds to a B-form DNA (via Watson–Crick base-pairing ) double helix by forming Hoogsteen base pairs or reversed Hoogsteen hydrogen bonds.

  8. Non-canonical base pairing - Wikipedia

    en.wikipedia.org/wiki/Non-canonical_base_pairing

    In this algorithm they make use of the positions of the hydrogen atoms as well as lone-pair electrons using suitable molecular mechanics/dynamics force-fields [45] and derive hydrogen bond formation probabilities for them. The final identifications of base pairs are done based on these probabilities and approach of hydrogen atoms to lone-pairs ...

  9. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    The linking number for circular DNA can only be changed by breaking of a covalent bond in one of the two strands. Always an integer, the linking number of a cccDNA is the sum of two components: twists (Tw) and writhes (Wr). [16] = + Twists are the number of times the two strands of DNA are twisted around each other.