Search results
Results from the WOW.Com Content Network
The Feynman diagrams are much easier to keep track of than "old-fashioned" terms, because the old-fashioned way treats the particle and antiparticle contributions as separate. Each Feynman diagram is the sum of exponentially many old-fashioned terms, because each internal line can separately represent either a particle or an antiparticle.
A Feynman diagram (box diagram) for photon–photon scattering: one photon scatters from the transient vacuum charge fluctuations of the other. Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed.
In the Stückelberg–Feynman interpretation, pair annihilation is the same process as pair production: Møller scattering: electron-electron scattering Bhabha scattering: electron-positron scattering Penguin diagram: a quark changes flavor via a W or Z loop Tadpole diagram: One loop diagram with one external leg Self-interaction or oyster diagram
The intrinsic quark structure of the target photon beam is revealed by observing characteristic patterns of the scattered electrons in the final state. Figure 1. Electron–photon scattering generic Feynman diagram. The incoming target photon splits into a nearly collinear quark–antiquark pair.
Feynman diagram of electron–positron pair production. One must calculate multiple diagrams to get the net cross section. The exact analytic form for the cross section of pair production must be calculated through quantum electrodynamics in the form of Feynman diagrams and results in a complicated function. To simplify, the cross section can ...
In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram.
In quantum electrodynamics, Bhabha scattering is the electron-positron scattering process: e + e − → e + e − {\displaystyle e^{+}e^{-}\rightarrow e^{+}e^{-}} There are two leading-order Feynman diagrams contributing to this interaction: an annihilation process and a scattering process.
A Feynman diagram is a contribution of a particular class of particle paths, which join and split as described by the diagram. More precisely, and technically, a Feynman diagram is a graphical representation of a perturbative contribution to the transition amplitude or correlation function of a quantum mechanical or statistical field theory.