Search results
Results from the WOW.Com Content Network
Model predictive control (MPC) is an advanced method of process control that is used to control a process while satisfying a set of constraints. It has been in use in the process industries in chemical plants and oil refineries since the 1980s.
Optimal control problem benchmark (Luus) with an integral objective, inequality, and differential constraint. Optimal control is the use of mathematical optimization to obtain a policy that is constrained by differential (=), equality (() =), or inequality (()) equations and minimizes an objective/reward function (()). The basic optimal control ...
Depending on the configuration, open-chain robotic manipulators require a degree of trajectory optimization. For instance, a robotic arm with 7 joints and 7 links (7-DOF) is a redundant system where one cartesian position of an end-effector can correspond to an infinite number of joint angle positions, thus this redundancy can be used to optimize a trajectory to, for example, avoid any ...
Alternatively, if the constraints are all equality constraints and are all linear, they can be solved for some of the variables in terms of the others, and the former can be substituted out of the objective function, leaving an unconstrained problem in a smaller number of variables.
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
Inspired by—but distinct from—the Hamiltonian of classical mechanics, the Hamiltonian of optimal control theory was developed by Lev Pontryagin as part of his maximum principle. [2] Pontryagin proved that a necessary condition for solving the optimal control problem is that the control should be chosen so as to optimize the Hamiltonian. [3]
A linear programming problem is one in which we wish to maximize or minimize a linear objective function of real variables over a polytope.In semidefinite programming, we instead use real-valued vectors and are allowed to take the dot product of vectors; nonnegativity constraints on real variables in LP (linear programming) are replaced by semidefiniteness constraints on matrix variables in ...
A constrained conditional model (CCM) is a machine learning and inference framework that augments the learning of conditional (probabilistic or discriminative) models with declarative constraints. The constraint can be used as a way to incorporate expressive [ clarification needed ] prior knowledge into the model and bias the assignments made ...