Search results
Results from the WOW.Com Content Network
The SNFS works as follows. Let n be the integer we want to factor. As in the rational sieve, the SNFS can be broken into two steps: First, find a large number of multiplicative relations among a factor base of elements of Z/nZ, such that the number of multiplicative relations is larger than the number of elements in the factor base.
We have s(P) = s(1,1) = 4, so the coordinates of 2P = (x ′, y ′) are x ′ = s 2 – 2x = 14 and y ′ = s(x – x ′) – y = 4(1 – 14) – 1 = –53, all numbers understood (mod n). Just to check that this 2P is indeed on the curve: (–53) 2 = 2809 = 14 3 + 5·14 – 5. Then we compute 3(2P). We have s(2P) = s(14,-53) = –593/106 ...
Now 97 is a non-trivial factor of 8051. Starting values other than x = y = 2 may give the cofactor (83) instead of 97. One extra iteration is shown above to make it clear that y moves twice as fast as x. Note that even after a repetition, the GCD can return to 1.
In either case the full quartic can then be divided by the factor (x − 1) or (x + 1) respectively yielding a new cubic polynomial, which can be solved to find the quartic's other roots. If a 1 = a 0 k , {\displaystyle \ a_{1}=a_{0}k\ ,} a 2 = 0 {\displaystyle \ a_{2}=0\ } and a 4 = a 3 k , {\displaystyle \ a_{4}=a_{3}k\ ,} then x = − k ...
Prime decomposition of n = 864 as 2 5 × 3 3. By the fundamental theorem of arithmetic, every positive integer has a unique prime factorization. (By convention, 1 is the empty product.) Testing whether the integer is prime can be done in polynomial time, for example, by the AKS primality test. If composite, however, the polynomial time tests ...
Refactoring is usually motivated by noticing a code smell. [2] For example, the method at hand may be very long, or it may be a near duplicate of another nearby method. Once recognized, such problems can be addressed by refactoring the source code, or transforming it into a new form that behaves the same as before but that no longer "smells".
x 2 − 5x − 6 = (12 x + 12) ( 1 / 12 x − 1 / 2 ) + 0 Since 12 x + 12 is the last nonzero remainder, it is a GCD of the original polynomials, and the monic GCD is x + 1 . In this example, it is not difficult to avoid introducing denominators by factoring out 12 before the second step.
Though the early language resembled modern Factor superficially in terms of syntax, the modern language is very different in practical terms and the current implementation is much faster. The language has changed significantly over time. Originally, Factor programs centered on manipulating Java objects with Java's reflection capabilities. From ...