Search results
Results from the WOW.Com Content Network
In computer programming, an indirection (also called a reference) is a way of referring to something using a name, reference, or container instead of the value itself. The most common form of indirection is the act of manipulating a value through its memory address. For example, accessing a variable through the use of a pointer.
C# has and allows pointers to selected types (some primitives, enums, strings, pointers, and even arrays and structs if they contain only types that can be pointed [14]) in unsafe context: methods and codeblock marked unsafe. These are syntactically the same as pointers in C and C++.
C# uses of reification to provide "first-class" generic objects that can be used like any other class, with code generation performed at class-load time. [29] Furthermore, C# has added several major features to accommodate functional-style programming, culminating in the LINQ extensions released with C# 3.0 and its supporting framework of ...
Let C be a category with finite products and a terminal object 1. A list object over an object A of C is: an object L A, a morphism o A : 1 → L A, and; a morphism s A : A × L A → L A; such that for any object B of C with maps b : 1 → B and t : A × B → B, there exists a unique f : L A → B such that the following diagram commutes:
Double dispatch is useful in situations where the choice of computation depends on the runtime types of its arguments. For example, a programmer could use double dispatch in the following situations: Sorting a mixed set of objects: algorithms require that a list of objects be sorted into some canonical order. Deciding if one element comes ...
Such a variable can be address without an explicit pointer reference (xxx=1;, or may be addressed with an explicit reference to the default locator (ppp), or to any other pointer (qqq->xxx=1;). Pointer arithmetic is not part of the PL/I standard, but many compilers allow expressions of the form ptr = ptr±expression.
Thus, one can use threads without paying the cost of creation and disposal of threads. The following shows the basic code of the object pool design pattern implemented using C#. For brevity the properties of the classes are declared using C# 3.0 automatically implemented property syntax.
A compiler can use the results of escape analysis as a basis for optimizations: [1] Converting heap allocations to stack allocations. [2] If an object is allocated in a subroutine, and a pointer to the object never escapes, the object may be a candidate for stack allocation instead of heap allocation.