Search results
Results from the WOW.Com Content Network
Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.
First, convert each template DNA base to its RNA complement (note that the complement of A is now U), as shown below. Note that the template strand of the DNA is the one the RNA is polymerized against; the other DNA strand would be the same as the RNA, but with thymine instead of uracil. DNA -> RNA A -> U T -> A C -> G G -> C A=T-> A=U
DNA transposons are DNA sequences, sometimes referred to "jumping genes", that can move and integrate to different locations within the genome. [1] They are class II transposable elements (TEs) that move through a DNA intermediate, as opposed to class I TEs, retrotransposons , that move through an RNA intermediate. [ 2 ]
Eukaryotic cells contain hundreds of ribosomal DNA repeats, sometimes distributed over multiple chromosomes. Termination of transcription occurs in the ribosomal intergenic spacer region that contains several transcription termination sites upstream of a Pol I pausing site.
The migration of cultured cells attached to a surface or in 3D is commonly studied using microscopy. [7] [8] [5] As cell movement is very slow, a few μm/minute, time-lapse microscopy videos are recorded of the migrating cells to speed up the movement.
In comparison to transcriptional regulation, it results in much more immediate cellular adjustment through direct regulation of protein concentration. The corresponding mechanisms are primarily targeted on the control of ribosome recruitment on the initiation codon , but can also involve modulation of peptide elongation, termination of protein ...
DNA transposons, LTR retrotransposons, SINEs, and LINEs make up a majority of the human genome. Mobile genetic elements (MGEs), sometimes called selfish genetic elements, [1] are a type of genetic material that can move around within a genome, or that can be transferred from one species or replicon to another.
A bacterial DNA transposon. A transposable element (TE), also transposon, or jumping gene, is a type of mobile genetic element, a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size.