enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Method of steepest descent - Wikipedia

    en.wikipedia.org/wiki/Method_of_steepest_descent

    In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is ...

  3. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...

  4. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can be derived from several different perspectives, including specialization of the conjugate direction method for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems. Despite differences in their approaches, these derivations share a common topic—proving the orthogonality of the ...

  5. Laplace's method - Wikipedia

    en.wikipedia.org/wiki/Laplace's_method

    An extension of the steepest descent method is the so-called nonlinear stationary phase/steepest descent method. Here, instead of integrals, one needs to evaluate asymptotically solutions of Riemann–Hilbert factorization problems.

  6. Stationary phase approximation - Wikipedia

    en.wikipedia.org/wiki/Stationary_phase_approximation

    This method originates from the 19th century, and is due to George Gabriel Stokes and Lord Kelvin. [1] It is closely related to Laplace's method and the method of steepest descent , but Laplace's contribution precedes the others.

  7. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    This method is not in general use. Davidon–Fletcher–Powell method. This method, a form of pseudo-Newton method, is similar to the one above but calculates the Hessian by successive approximation, to avoid having to use analytical expressions for the second derivatives. Steepest descent. Although a reduction in the sum of squares is ...

  8. Nonlinear conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_conjugate...

    Subsequent search directions lose conjugacy requiring the search direction to be reset to the steepest descent direction at least every N iterations, or sooner if progress stops. However, resetting every iteration turns the method into steepest descent. The algorithm stops when it finds the minimum, determined when no progress is made after a ...

  9. Powell's dog leg method - Wikipedia

    en.wikipedia.org/wiki/Powell's_dog_leg_method

    Powell's dog leg method, also called Powell's hybrid method, is an iterative optimisation algorithm for the solution of non-linear least squares problems, introduced in 1970 by Michael J. D. Powell. [1] Similarly to the Levenberg–Marquardt algorithm, it combines the Gauss–Newton algorithm with gradient descent, but it uses an explicit trust ...