Search results
Results from the WOW.Com Content Network
The semidirect product is isomorphic to the dihedral group of order 6 if φ(0) is the identity and φ(1) is the non-trivial automorphism of C 3, which inverses the elements. Thus we get: ( n 1 , 0) * ( n 2 , h 2 ) = ( n 1 + n 2 , h 2 )
List of all nonabelian groups up to order 31 Order Id. [a] G o i Group Non-trivial proper subgroups [1] Cycle graph Properties 6 7 G 6 1: D 6 = S 3 = Z 3 ⋊ Z 2: Z 3, Z 2 (3) : Dihedral group, Dih 3, the smallest non-abelian group, symmetric group, smallest Frobenius group.
In mathematics, a dihedral group is the group of symmetries of a regular polygon, [1] [2] which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. [3] The notation for the dihedral group differs in geometry and abstract ...
In mathematics, and specifically in group theory, a non-abelian group, sometimes called a non-commutative group, is a group (G, ∗) in which there exists at least one pair of elements a and b of G, such that a ∗ b ≠ b ∗ a. [1] [2] This class of groups contrasts with the abelian groups, where all pairs of group elements commute.
The group {1, −1} above and the cyclic group of order 3 under ordinary multiplication are both examples of abelian groups, and inspection of the symmetry of their Cayley tables verifies this. In contrast, the smallest non-abelian group, the dihedral group of order 6, does not have a symmetric Cayley table.
This article lists the groups by Schoenflies notation, Coxeter notation, [1] orbifold notation, [2] and order. John Conway uses a variation of the Schoenflies notation, based on the groups' quaternion algebraic structure, labeled by one or two upper case letters, and whole number subscripts.
The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a concise form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on any representative of the respective conjugacy class of G (because characters are class functions).
Conjugacy classes may be referred to by describing them, or more briefly by abbreviations such as "6A", meaning "a certain conjugacy class with elements of order 6", and "6B" would be a different conjugacy class with elements of order 6; the conjugacy class 1A is the conjugacy class of the identity which has order 1.