Search results
Results from the WOW.Com Content Network
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
A glide reflection line parallel to a true reflection line already implies this situation. This corresponds to wallpaper group cm. The translational symmetry is given by oblique translation vectors from one point on a true reflection line to two points on the next, supporting a rhombus with the true reflection line as one of the diagonals. With ...
It is the flattest possible glide angle through calm air, which will maximize the distance flown. This airspeed (vertical line) corresponds to the tangent point of a line starting from the origin of the graph. A glider flying faster or slower than this airspeed will cover less distance before landing. [4] [5]
A straight line from the origin to some point on the curve has a gradient equal to the glide angle at that speed, so the corresponding tangent shows the best glide angle tan −1 (C D /C L) min ≃ 3.3°. This is not the lowest rate of sink but provides the greatest range, requiring a speed of 240 km/h (149 mph); the minimum sink rate of about ...
A screw displacement (also screw operation or rotary translation) is the composition of a rotation by an angle φ about an axis (called the screw axis) with a translation by a distance d along this axis. A positive rotation direction usually means one that corresponds to the translation direction by the right-hand rule. This means that if the ...
the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line y = − x / m . {\displaystyle y=-x/m\,.} This distance can be found by first solving the linear systems
During the glide between thermals, the index arrow is set at the rate of climb expected in the next thermal. On the speed ring, the variometer needle points to the optimum speed to fly between thermals. [17] Electronic versions of the MacCready Ring are built into glide computers that will give audible warnings to the pilot to speed up or slow ...
The order of a finite projective plane is n = k – 1, that is, one less than the number of points on a line. All known projective planes have orders that are prime powers. A projective plane of order n is an ((n 2 + n + 1) n + 1) configuration. The smallest projective plane has order two and is known as the Fano plane.