Search results
Results from the WOW.Com Content Network
Sorting small arrays optimally (in the fewest comparisons and swaps) or fast (i.e. taking into account machine-specific details) is still an open research problem, with solutions only known for very small arrays (<20 elements). Similarly optimal (by various definitions) sorting on a parallel machine is an open research topic.
In some languages, assigning a value to an element of an array automatically extends the array, if necessary, to include that element. In other array types, a slice can be replaced by an array of different size, with subsequent elements being renumbered accordingly – as in Python's list assignment A[5:5] = [10,20,30], that inserts three new ...
A further relaxation requiring only a list of the k smallest elements, but without requiring that these be ordered, makes the problem equivalent to partition-based selection; the original partial sorting problem can be solved by such a selection algorithm to obtain an array where the first k elements are the k smallest, and sorting these, at a total cost of O(n + k log k) operations.
In Raku, a sister language to Perl, for must be used to traverse elements of a list (foreach is not allowed). The expression which denotes the collection to loop over is evaluated in list-context, but not flattened by default, and each item of the resulting list is, in turn, aliased to the loop variable(s). List literal example:
The removed element is the overall winner. Therefore, it has won each game on the path from the input array to the root. When selecting a new element from the input array, the element needs to compete against the previous losers on the path to the root. When using a loser tree, the partner for replaying the games is already stored in the nodes.
Thus a one-dimensional array is a list of data, a two-dimensional array is a rectangle of data, [12] a three-dimensional array a block of data, etc. This should not be confused with the dimension of the set of all matrices with a given domain, that is, the number of elements in the array.
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
The basis behind array programming and thinking is to find and exploit the properties of data where individual elements are similar or adjacent. Unlike object orientation which implicitly breaks down data to its constituent parts (or scalar quantities), array orientation looks to group data and apply a uniform handling.