Search results
Results from the WOW.Com Content Network
Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as boron and antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
This is a list of silicon producers. The industry involves several very different stages of production. Production starts at silicon metal, which is the material used to gain high purity silicon. High purity silicon in different grades of purity is used for growing silicon ingots, which are sliced to wafers in a process called wafering.
Semiconductor doping with boron, phosphorus, or arsenic is a common application of ion implantation. When implanted in a semiconductor, each dopant atom can create a charge carrier in the semiconductor after annealing. A hole can be created for a p-type dopant, and an electron for an n-type dopant. This modifies the conductivity of the ...
F 2 is used as a measurement of area for different parts of a semiconductor device, based on the feature size of a semiconductor manufacturing process. Many semiconductor devices are designed in sections called cells, and each cell represents a small part of the device such as a memory cell to store data.
In semiconductor physics, an acceptor is a dopant atom that when substituted into a semiconductor lattice forms a p-type region. Boron atom acting as an acceptor in the simplified 2D silicon lattice. When silicon (Si), having four valence electrons , is doped with elements from group III of the periodic table , such as boron (B) and aluminium ...
However, these impurities introduce new energy levels in the band gap affecting the band structure which may alter the electronic properties of the semiconductor to a great extent. Having a shallow donor level means that these additional energy levels are not more than 3 k b T {\displaystyle 3k_{b}T} (0.075 eV at room temperature) away from the ...
In semiconductor physics, a donor is a dopant atom that, when added to a semiconductor, can form a n-type region. Phosphorus atom acting as a donor in the simplified 2D silicon lattice. For example, when silicon (Si), having four valence electrons , is to be doped as a n-type semiconductor , elements from group V like phosphorus (P) or arsenic ...