enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Abelian group - Wikipedia

    en.wikipedia.org/wiki/Abelian_group

    Every subgroup of an abelian group is normal, so each subgroup gives rise to a quotient group. Subgroups, quotients, and direct sums of abelian groups are again abelian. The finite simple abelian groups are exactly the cyclic groups of prime order. [6]: 32 The concepts of abelian group and -module agree.

  3. Abelian variety - Wikipedia

    en.wikipedia.org/wiki/Abelian_variety

    An abelian function is a meromorphic function on an abelian variety, which may be regarded therefore as a periodic function of n complex variables, having 2n independent periods; equivalently, it is a function in the function field of an abelian variety.

  4. Centralizer and normalizer - Wikipedia

    en.wikipedia.org/wiki/Centralizer_and_normalizer

    Containment occurs exactly when S is abelian. If H is a subgroup of G, then N G (H) contains H. If H is a subgroup of G, then the largest subgroup of G in which H is normal is the subgroup N G (H). If S is a subset of G such that all elements of S commute with each other, then the largest subgroup of G whose center contains S is the subgroup C ...

  5. Normal subgroup - Wikipedia

    en.wikipedia.org/wiki/Normal_subgroup

    A normal subgroup of a normal subgroup of a group need not be normal in the group. That is, normality is not a transitive relation. The smallest group exhibiting this phenomenon is the dihedral group of order 8. [15] However, a characteristic subgroup of a normal subgroup is normal. [16] A group in which normality is transitive is called a T ...

  6. Central subgroup - Wikipedia

    en.wikipedia.org/wiki/Central_subgroup

    In mathematics, in the field of group theory, a subgroup of a group is termed central if it lies inside the center of the group. Given a group G {\displaystyle G} , the center of G {\displaystyle G} , denoted as Z ( G ) {\displaystyle Z(G)} , is defined as the set of those elements of the group which commute with every element of the group.

  7. Glossary of group theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_group_theory

    normal subgroup A subgroup N of a group G is normal in G (denoted N G) if the conjugation of an element n of N by an element g of G is always in N, that is, if for all g ∈ G and n ∈ N, gng −1 ∈ N. A normal subgroup N of a group G can be used to construct the quotient group G / N. normalizer

  8. p-group - Wikipedia

    en.wikipedia.org/wiki/P-group

    Since every central subgroup is normal, it follows that every minimal normal subgroup of a finite p-group is central and has order p. Indeed, the socle of a finite p-group is the subgroup of the center consisting of the central elements of order p. If G is a p-group, then so is G/Z, and so it too has a non-trivial center.

  9. Commutator subgroup - Wikipedia

    en.wikipedia.org/wiki/Commutator_subgroup

    The commutator subgroup is important because it is the smallest normal subgroup such that the quotient group of the original group by this subgroup is abelian. In other words, / is abelian if and only if contains the commutator subgroup of . So in some sense it provides a measure of how far the group is from being abelian; the larger the ...