Search results
Results from the WOW.Com Content Network
Example Bjerrum plot: Change in carbonate system of seawater from ocean acidification.. A Bjerrum plot (named after Niels Bjerrum), sometimes also known as a Sillén diagram (after Lars Gunnar Sillén), or a Hägg diagram (after Gunnar Hägg) [1] is a graph of the concentrations of the different species of a polyprotic acid in a solution, as a function of pH, [2] when the solution is at ...
As ε decreases, the fixed points come together and annihilate one another; As ε increases, the fixed points appear. dx/dt is denoted as v. Nonlinear dynamical systems can be most easily understood with a one-dimensional example system where the change in some quantity x (e.g. protein concentration) abundance depends only on itself:
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Three examples of Turing patterns Six stable states from Turing equations, the last one forms Turing patterns. The Turing pattern is a concept introduced by English mathematician Alan Turing in a 1952 paper titled "The Chemical Basis of Morphogenesis" which describes how patterns in nature, such as stripes and spots, can arise naturally and autonomously from a homogeneous, uniform state.
In the phenomenological approach, diffusion is the movement of a substance from a region of high concentration to a region of low concentration without bulk motion. According to Fick's laws, the diffusion flux is proportional to the negative gradient of concentrations. It goes from regions of higher concentration to regions of lower concentration.
The steepest point of the curve corresponds with an EC 50 of 0.7 molar The dose–response relationship , or exposure–response relationship , describes the magnitude of the response of an organism , as a function of exposure (or doses ) to a stimulus or stressor (usually a chemical ) after a certain exposure time. [ 1 ]
In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. [1] Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. [1]
To determine the optimum time spent on a behavior, one can make a graph showing how benefits and costs change with behavior. Optimality is defined as the point where the difference between benefits and costs for a behavior is maximized, which can be done by graphing the benefits and costs on the y-axis and a measure of the behavior on the x-axis.