Search results
Results from the WOW.Com Content Network
DNA nanotechnology is the field that seeks to design nanoscale structures using the molecular recognition properties of DNA molecules. [178] DNA nanotechnology uses the unique molecular recognition properties of DNA and other nucleic acids to create self-assembling branched DNA complexes with useful properties. [179]
A glycosidic bond or glycosidic linkage is a type of ether bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate. Formation of ethyl glucoside: Glucose and ethanol combine to form ethyl glucoside and water. The reaction often favors formation of the α-glycosidic bond as shown due to the ...
DNA polymerase. A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex.
Nucleic acid double helix. Two complementary regions of nucleic acid molecules will bind and form a double helical structure held together by base pairs. In molecular biology, the term double helix[1] refers to the structure formed by double-stranded molecules of nucleic acids such as DNA. The double helical structure of a nucleic acid complex ...
Once bound to DNA, the beta subunits can freely slide along double stranded DNA. The beta subunits in turn bind the αε polymerase complex. The α subunit possesses DNA polymerase activity and the ε subunit is a 3’-5’ exonuclease. [9] The beta chain of bacterial DNA polymerase III is composed of three topologically equivalent domains (N ...
Nucleoside triphosphate. A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar (either ribose or deoxyribose), with three phosphate groups bound to the sugar. [1] They are the molecular precursors of both DNA and RNA, which are chains of nucleotides made through the processes of DNA replication and ...
The main nucleic acid helix structures (A-, B- and Z-form) Nucleic acid secondary structure is generally divided into helices (contiguous base pairs), and various kinds of loops (unpaired nucleotides surrounded by helices). Frequently these elements, or combinations of them, are further classified into additional categories including, for ...
A nucleic acid sequence is the order of nucleotides within a DNA (GACT) or RNA (GACU) molecule that is determined by a series of letters. Sequences are presented from the 5' to 3' end and determine the covalent structure of the entire molecule. Sequences can be complementary to another sequence in that the base on each position is complementary ...