enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Polynomial_remainder_theorem

    Polynomial remainder theorem. In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials. It states that, for every number any polynomial is the sum of and the product by of a polynomial in of degree less than the degree of In particular, is ...

  3. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :

  4. Factor theorem - Wikipedia

    en.wikipedia.org/wiki/Factor_theorem

    The factor theorem is also used to remove known zeros from a polynomial while leaving all unknown zeros intact, thus producing a lower degree polynomial whose zeros may be easier to find. Abstractly, the method is as follows: [3] Deduce the candidate of zero of the polynomial from its leading coefficient and constant term .

  5. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset. [1] Given a set of n + 1 data points , with no two the same, a polynomial function is said to interpolate the data if for each .

  6. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    When the denominator b(x) is monic and linear, that is, b(x) = x − c for some constant c, then the polynomial remainder theorem asserts that the remainder of the division of a(x) by b(x) is the evaluation a(c). [18] In this case, the quotient may be computed by Ruffini's rule, a special case of synthetic division. [20]

  7. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]

  8. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Polynomial greatest common divisor. In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate ...

  9. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    Bézout's identity. Relating two numbers and their greatest common divisor. In mathematics, Bézout's identity (also called Bézout's lemma), named after Étienne Bézout who proved it for polynomials, is the following theorem: Bézout's identity — Let a and b be integers with greatest common divisor d. Then there exist integers x and y such ...