Search results
Results from the WOW.Com Content Network
The C++ examples in this section demonstrate the principle of using composition and interfaces to achieve code reuse and polymorphism. Due to the C++ language not having a dedicated keyword to declare interfaces, the following C++ example uses inheritance from a pure abstract base class.
The class A serves as a base class for the derived class B, which in turn serves as a base class for the derived class C. The class B is known as intermediate base class because it provides a link for the inheritance between A and C. The chain ABC is known as inheritance path. A derived class with multilevel inheritance is declared as follows:
It is sometimes called "Upside-Down Inheritance" [5] [6] due to the way it allows class hierarchies to be extended by substituting different base classes. The Microsoft Implementation of CRTP in Active Template Library (ATL) was independently discovered, also in 1995, by Jan Falkin, who accidentally derived a base class from a derived class ...
[26] [27] In C++, an abstract class is a class having at least one abstract method given by the appropriate syntax in that language (a pure virtual function in C++ parlance). [25] A class consisting of only pure virtual methods is called a pure abstract base class (or pure ABC) in C++ and is also known as an interface by users of the language. [13]
An interface as in C# and Java can be defined in C++ as a class containing only pure virtual functions, often known as an abstract base class or "ABC". The member functions of such an abstract base class are normally explicitly defined in the derived class, not inherited implicitly.
In some languages, abstract types with no implementation (rather than an incomplete implementation) are known as protocols, interfaces, signatures, or class types. In class-based object-oriented programming, abstract types are implemented as abstract classes (also known as abstract base classes), and concrete types as concrete classes.
The non-virtual interface pattern (NVI) controls how methods in a base class are overridden. Such methods may be called by clients and overridable methods with core functionality. [1] It is a pattern that is strongly related to the template method pattern. The NVI pattern recognizes the benefits of a non-abstract method invoking the subordinate ...
The g++ compiler implements the multiple inheritance of the classes B1 and B2 in class D using two virtual method tables, one for each base class. (There are other ways to implement multiple inheritance, but this is the most common.) This leads to the necessity for "pointer fixups", also called thunks, when casting. Consider the following C++ code: