enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multicollinearity - Wikipedia

    en.wikipedia.org/wiki/Multicollinearity

    Perfect multicollinearity refers to a situation where the predictive variables have an exact linear relationship. When there is perfect collinearity, the design matrix X {\displaystyle X} has less than full rank , and therefore the moment matrix X T X {\displaystyle X^{\mathsf {T}}X} cannot be inverted .

  3. Dummy variable (statistics) - Wikipedia

    en.wikipedia.org/wiki/Dummy_variable_(statistics)

    If dummy variables for all categories were included, their sum would equal 1 for all observations, which is identical to and hence perfectly correlated with the vector-of-ones variable whose coefficient is the constant term; if the vector-of-ones variable were also present, this would result in perfect multicollinearity, [2] so that the matrix ...

  4. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    This means that if the various observations (X 1i, X 2i) are plotted in the (X 1, X 2) plane, these points are collinear in the sense defined earlier in this article. Perfect multicollinearity refers to a situation in which k (k ≥ 2) explanatory variables in a multiple regression model are perfectly linearly related, according to

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Lack of perfect multicollinearity in the predictors. For standard least squares estimation methods, the design matrix X must have full column rank p; otherwise perfect multicollinearity exists in the predictor variables, meaning a linear relationship exists between two or more predictor variables. This can be caused by accidentally duplicating ...

  6. Common-method variance - Wikipedia

    en.wikipedia.org/wiki/Common-method_variance

    Several ex ante remedies exist that help to avoid or minimize possible common method variance. Important remedies have been compiled and discussed by Chang et al. (2010), Lindell & Whitney (2001) and Podsakoff et al. (2003). [5] [6] [1]

  7. Simpson's paradox - Wikipedia

    en.wikipedia.org/wiki/Simpson's_paradox

    Simpson's paradox is a phenomenon in probability and statistics in which a trend appears in several groups of data but disappears or reverses when the groups are combined. This result is often encountered in social-science and medical-science statistics, [ 1 ] [ 2 ] [ 3 ] and is particularly problematic when frequency data are unduly given ...

  8. Spurious relationship - Wikipedia

    en.wikipedia.org/wiki/Spurious_relationship

    Graphical model: Whereas a mediator is a factor in the causal chain (top), a confounder is a spurious factor incorrectly implying causation (bottom). In statistics, a spurious relationship or spurious correlation [1] [2] is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third ...

  9. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    In statistics, a sequence of random variables is homoscedastic (/ ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k /) if all its random variables have the same finite variance; this is also known as homogeneity of variance. The complementary notion is called heteroscedasticity, also known as heterogeneity of variance.