Search results
Results from the WOW.Com Content Network
Interaction energy of an argon dimer.The long-range section is due to London dispersion forces. London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds [1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically ...
The Axilrod–Teller potential in molecular physics, is a three-body potential that results from a third-order perturbation correction to the attractive London dispersion interactions (instantaneous induced dipole-induced dipole)
In molecular physics and chemistry, the van der Waals force (sometimes van der Waals' force) is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds , these attractions do not result from a chemical electronic bond ; [ 2 ] they are comparatively weak and therefore more susceptible to disturbance.
These induced surface charges create an opposing electric field that exactly cancels the field of the external charge throughout the interior of the metal. Therefore electrostatic induction ensures that the electric field everywhere inside a conductive object is zero. A remaining question is how large the induced charges are.
A dipole-induced dipole interaction (Debye force) is due to the approach of a molecule with a permanent dipole to another non-polar molecule with no permanent dipole. This approach causes the electrons of the non-polar molecule to be polarized toward or away from the dipole (or "induce" a dipole) of the approaching molecule. [13]
Instantaneous-dipole induced-dipole attraction. Add languages. ... Download as PDF; Printable version; ... Redirect to: London dispersion force;
Debye forces, or dipole–induced dipole interactions, can also play a role in dispersive adhesion. These come about when a nonpolar molecule becomes temporarily polarized due to interaction with a nearby polar molecule. This "induced dipole" in the nonpolar molecule then is attracted to the permanent dipole, yielding a Debye attraction.
A similar parameter exists to relate the magnitude of the induced dipole moment p of an individual molecule to the local electric field E that induced the dipole. This parameter is the molecular polarizability ( α ), and the dipole moment resulting from the local electric field E local is given by: p = ε 0 α E local {\displaystyle \mathbf {p ...