Search results
Results from the WOW.Com Content Network
Tetrafluoroethane (a haloalkane) is a colorless liquid that boils well below room temperature (as seen here) and can be extracted from common canned air canisters by simply inverting them during use. The haloalkanes (also known as halogenoalkanes or alkyl halides) are alkanes containing one or more halogen substituents. [1]
A hydrohalogenation reaction is the electrophilic addition of hydrogen halides like hydrogen chloride or hydrogen bromide to alkenes to yield the corresponding haloalkanes. [ 1 ] [ 2 ] [ 3 ] If the two carbon atoms at the double bond are linked to a different number of hydrogen atoms, the halogen is found preferentially at the carbon with fewer ...
As a primary haloalkane, it is prone to S N 2 type reactions. It is commonly used as an alkylating agent. When combined with magnesium metal in dry ether, it gives the corresponding Grignard reagent. Such reagents are used to attach butyl groups to various substrates. 1-Bromobutane is the precursor to n-butyllithium: [4]
Darzens halogenation is the chemical synthesis of alkyl halides from alcohols via the treatment upon reflux of a large excess of thionyl chloride or thionyl bromide (SOX 2) in the presence of a small amount of a nitrogen base, such as a tertiary amine or pyridine or its corresponding hydrochloride or hydrobromide salt.
In crossed aldol reactions between halo ketones and aldehydes, the initial reaction product is a halohydrin which can subsequently form an oxirane in the presence of base. α-Halo ketones can react with amines to form an α-halo imine, which can be converted back to the parent halo ketone by hydrolysis , so that halo imines may be used as ...
Some metal-organic coordination compounds can eliminate hydrogen halides, [6] either spontaneously, [7] thermally, or by mechanochemical reaction with a solid base such as potassium hydroxide. [8] For example, salts that contain acidic cations hydrogen bonded to halometallate anions will often undergo dehydrohalogenation reactions reversibly: [6]
In organometallic chemistry, metal–halogen exchange is a fundamental reaction that converts an organic halide into an organometallic product. The reaction commonly involves the use of electropositive metals (Li, Na, Mg) and organochlorides, bromides, and iodides.
An example involves the conversion of the ethyl ester of 5-bromovaleric acid to the iodide: [4] EtO 2 C(CH 2) 4 Br + NaI → EtO 2 C(CH 2) 4 I + NaBr. Potassium fluoride is used for the conversion of chlorocarbons into fluorocarbons. [5] Such reactions usually employ polar solvents such as dimethyl formamide, ethylene glycol, and dimethyl ...