enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Biot–Savart law - Wikipedia

    en.wikipedia.org/wiki/BiotSavart_law

    In physics, specifically electromagnetism, the BiotSavart law (/ ˈ b iː oʊ s ə ˈ v ɑːr / or / ˈ b j oʊ s ə ˈ v ɑːr /) [1] is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.

  3. Jean-Baptiste Biot - Wikipedia

    en.wikipedia.org/wiki/Jean-Baptiste_Biot

    Jean-Baptiste Biot (/ ˈ b iː oʊ, ˈ b j oʊ /; [2] French:; 21 April 1774 – 3 February 1862) was a French physicist, astronomer, and mathematician who co-discovered the BiotSavart law of magnetostatics with Félix Savart, established the reality of meteorites, made an early balloon flight, and studied the polarization of light.

  4. Gaussian units - Wikipedia

    en.wikipedia.org/wiki/Gaussian_units

    One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the BiotSavart law – do have a factor of 4π attached to the r 2.

  5. Laplace's law - Wikipedia

    en.wikipedia.org/wiki/Laplace's_law

    Laplace's law or The law of Laplace may refer to several concepts, BiotSavart law, in electromagnetics, it describes the magnetic field set up by a steady current density. Young–Laplace equation, describing pressure difference over an interface in fluid mechanics. Rule of succession, a smoothing technique accounting for unseen data.

  6. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    Jefimenko says, "...neither Maxwell's equations nor their solutions indicate an existence of causal links between electric and magnetic fields. Therefore, we must conclude that an electromagnetic field is a dual entity always having an electric and a magnetic component simultaneously created by their common sources: time-variable electric ...

  7. Félix Savart - Wikipedia

    en.wikipedia.org/wiki/Félix_Savart

    Savart became a professor at Collège de France in 1820 and was the co-originator of the BiotSavart law, along with Jean-Baptiste Biot. Together, they worked on the theory of magnetism and electrical currents. Their law was developed and published in 1820. [4] The BiotSavart law relates magnetic fields to the currents which are their sources.

  8. Ampère's circuital law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_circuital_law

    In 1865 he generalized the equation to apply to time-varying currents by adding the displacement current term, resulting in the modern form of the law, sometimes called the Ampère–Maxwell law, [3] [4] [5] which is one of Maxwell's equations that form the basis of classical electromagnetism.

  9. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by Maxwell is no longer included. The vector calculus formalism below, the work of Oliver Heaviside, [6] [7] has become standard.