enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Free monoid - Wikipedia

    en.wikipedia.org/wiki/Free_monoid

    The free monoid on a set A is usually denoted A ∗. The free semigroup on A is the subsemigroup of A ∗ containing all elements except the empty string. It is usually denoted A +. [1] [2] More generally, an abstract monoid (or semigroup) S is described as free if it is isomorphic to the free monoid (or semigroup) on some set. [3]

  3. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    Many definitions and theorems about monoids can be generalised to small categories with more than one object. For example, a quotient of a category with one object is just a quotient monoid. Monoids, just like other algebraic structures, also form their own category, Mon, whose objects are monoids and whose morphisms are monoid homomorphisms. [8]

  4. Monoid (category theory) - Wikipedia

    en.wikipedia.org/wiki/Monoid_(category_theory)

    A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton argument. A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the Cartesian product) is a unital quantale.

  5. Presentation of a monoid - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_monoid

    The monoid is then presented as the quotient of the free monoid (or the free semigroup) by these relations. This is an analogue of a group presentation in group theory . As a mathematical structure, a monoid presentation is identical to a string rewriting system (also known as a semi-Thue system).

  6. Monoidal category - Wikipedia

    en.wikipedia.org/wiki/Monoidal_category

    Ordinary monoids are precisely the monoid objects in the cartesian monoidal category Set. Further, any (small) strict monoidal category can be seen as a monoid object in the category of categories Cat (equipped with the monoidal structure induced by the cartesian product).

  7. Trace monoid - Wikipedia

    en.wikipedia.org/wiki/Trace_monoid

    Let denote the free monoid on a set of generators , that is, the set of all strings written in the alphabet .The asterisk is a standard notation for the Kleene star.An independency relation on the alphabet then induces a symmetric binary relation on the set of strings : two strings , are related, , if and only if there exist ,, and a pair (,) such that = and =.

  8. Category of rings - Wikipedia

    en.wikipedia.org/wiki/Category_of_rings

    which assigns to each set X the free ring generated by X. One can also view the category of rings as a concrete category over Ab (the category of abelian groups) or over Mon (the category of monoids). Specifically, there are forgetful functors. A : Ring → Ab M : Ring → Mon. which "forget" multiplication and addition, respectively.

  9. Semigroup - Wikipedia

    en.wikipedia.org/wiki/Semigroup

    A semigroup homomorphism between monoids preserves identity if it is a monoid homomorphism. But there are semigroup homomorphisms that are not monoid homomorphisms, e.g. the canonical embedding of a semigroup S without identity into S 1 .