Search results
Results from the WOW.Com Content Network
A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}
The term differential is used nonrigorously in calculus to refer to an infinitesimal ("infinitely small") change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x. The idea of an ...
Since Mathieu's equation is a second order differential equation, one can construct two linearly independent solutions. Floquet's theory says that if a {\displaystyle a} is equal to a characteristic number, one of these solutions can be taken to be periodic, and the other nonperiodic.
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
Implicit differentiation of the exact second-order equation times will yield an (+) th-order differential equation with new conditions for exactness that can be readily deduced from the form of the equation produced. For example, differentiating the above second-order differential equation once to yield a third-order exact equation gives the ...
In mathematics, the annihilator method is a procedure used to find a particular solution to certain types of non-homogeneous ordinary differential equations (ODEs). [1] It is similar to the method of undetermined coefficients, but instead of guessing the particular solution in the method of undetermined coefficients, the particular solution is determined systematically in this technique.
Another form of erfc x for x ≥ 0 is known as Craig's formula, after its discoverer: [27] = (). This expression is valid only for positive values of x , but it can be used in conjunction with erfc x = 2 − erfc(− x ) to obtain erfc( x ) for negative values.
That is, the α-th derivative of δ a is the distribution whose value on any test function φ is the α-th derivative of φ at a (with the appropriate positive or negative sign). The first partial derivatives of the delta function are thought of as double layers along the coordinate planes.