enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrophilic substitution - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_substitution

    This reaction is similar to nucleophilic aliphatic substitution where the reactant is a nucleophile rather than an electrophile. The four possible electrophilic aliphatic substitution reaction mechanisms are S E 1, S E 2(front), S E 2(back) and S E i (Substitution Electrophilic), which are also similar to the nucleophile counterparts S N 1 and ...

  3. Azo coupling - Wikipedia

    en.wikipedia.org/wiki/Azo_coupling

    In organic chemistry, an azo coupling is an reaction between a diazonium compound (R−N≡N +) and another aromatic compound that produces an azo compound (R−N=N−R’).In this electrophilic aromatic substitution reaction, the aryldiazonium cation is the electrophile, and the activated carbon (usually from an arene, which is called coupling agent), serves as a nucleophile.

  4. Umpolung - Wikipedia

    en.wikipedia.org/wiki/Umpolung

    For example, cyanide is a key catalyst in the benzoin condensation, a classical example of polarity inversion. Mechanism of the benzoin condensation. The net result of the benzoin reaction is that a bond has been formed between two carbons that are normally electrophiles.

  5. Substitution reaction - Wikipedia

    en.wikipedia.org/wiki/Substitution_reaction

    Electrophiles are involved in electrophilic substitution reactions, particularly in electrophilic aromatic substitutions. In this example, the benzene ring's electron resonance structure is attacked by an electrophile E +. The resonating bond is broken and a carbocation resonating structure results.

  6. Formylation - Wikipedia

    en.wikipedia.org/wiki/Formylation

    Formylation reactions are a form of electrophilic aromatic substitution and therefore work best with electron-rich starting materials. Phenols are a common substrate, as they readily deprotonate to excellent phenoxide nucleophiles. Other electron-rich substrates, such as mesitylene, pyrrole, or fused aromatic rings can also be expected to react.

  7. Electrophile - Wikipedia

    en.wikipedia.org/wiki/Electrophile

    For example, ethene + bromine → 1,2-dibromoethane: C 2 H 4 + Br 2 → BrCH 2 CH 2 Br. This takes the form of 3 main steps shown below; [3] Forming of a π-complex The electrophilic Br-Br molecule interacts with electron-rich alkene molecule to form a π-complex 1. Forming of a three-membered bromonium ion

  8. Aromatic sulfonation - Wikipedia

    en.wikipedia.org/wiki/Aromatic_sulfonation

    Sulfur trioxide or its protonated derivative is the actual electrophile in this electrophilic aromatic substitution. To drive the equilibrium, dehydrating agents such as thionyl chloride can be added: [2] C 6 H 6 + H 2 SO 4 + SOCl 2 → C 6 H 5 SO 3 H + SO 2 + 2 HCl. Historically, mercurous sulfate has been used to catalyze the reaction. [3]

  9. Directed ortho metalation - Wikipedia

    en.wikipedia.org/wiki/Directed_ortho_metalation

    Directed ortho metalation (DoM) is an adaptation of electrophilic aromatic substitution in which electrophiles attach themselves exclusively to the ortho-position of a direct metalation group or DMG through the intermediary of an aryllithium compound. [1] The DMG interacts with lithium through a hetero atom.