Search results
Results from the WOW.Com Content Network
Quantities in this figure are the absolute values of energy transfers (heat and work). The proof of the Carnot theorem is a proof by contradiction or reductio ad absurdum (a method to prove a statement by assuming its falsity and logically deriving a false or contradictory statement from this assumption), based on a situation like the right ...
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
In electrodynamics, Poynting's theorem is a statement of conservation of energy for electromagnetic fields developed by British physicist John Henry Poynting. [1] It states that in a given volume, the stored energy changes at a rate given by the work done on the charges within the volume, minus the rate at which energy leaves the volume.
What is now known as the Clausius theorem was first published in 1862 in Clausius' sixth memoir, "On the Application of the Theorem of the Equivalence of Transformations to Interior Work". Clausius sought to show a proportional relationship between entropy and the energy flow by heating (δQ) into a system. In a system, this heat energy can be ...
The energy entering through A 1 is the sum of the kinetic energy entering, the energy entering in the form of potential gravitational energy of the fluid, the fluid thermodynamic internal energy per unit of mass (ε 1) entering, and the energy entering in the form of mechanical p dV work: = (+ + +) where Ψ = gz is a force potential due to the ...
In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by a conservative force (where the work done is independent of path), with that of the total potential energy of the system.
For the special case of = , this gives a re-statement of conservation of energy or Poynting's theorem (since here we have assumed lossless materials, unlike above): The time-average rate of work done by the current (given by the real part of ) is equal to the time-average outward flux of power (the integral of the Poynting vector). By the same ...