Search results
Results from the WOW.Com Content Network
The Python package NumPy provides a pseudoinverse calculation through its functions matrix.I and linalg.pinv; its pinv uses the SVD-based algorithm. SciPy adds a function scipy.linalg.pinv that uses a least-squares solver. The MASS package for R provides a calculation of the Moore–Penrose inverse through the ginv function. [24] The ginv ...
In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix into a rotation, followed by a rescaling followed by another rotation. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any m × n {\displaystyle m\times n} matrix.
MATLAB – The SVD function is part of the basic system. In the Statistics Toolbox, the functions princomp and pca (R2012b) give the principal components, while the function pcares gives the residuals and reconstructed matrix for a low-rank PCA approximation. Matplotlib – Python library have a PCA package in the .mlab module.
Latent semantic indexing (LSI) is an indexing and retrieval method that uses a mathematical technique called singular value decomposition (SVD) to identify patterns in the relationships between the terms and concepts contained in an unstructured collection of text. LSI is based on the principle that words that are used in the same contexts tend ...
In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one type of generalization of the matrix singular value decomposition. It has applications in computer vision, computer graphics, machine learning, scientific computing, and signal ...
K-SVD is an algorithm that performs SVD at its core to update the atoms of the dictionary one by one and basically is a generalization of K-means. It enforces that each element of the input data x i {\displaystyle x_{i}} is encoded by a linear combination of not more than T 0 {\displaystyle T_{0}} elements in a way identical to the MOD approach:
In linear algebra, the generalized singular value decomposition (GSVD) is the name of two different techniques based on the singular value decomposition (SVD).The two versions differ because one version decomposes two matrices (somewhat like the higher-order or tensor SVD) and the other version uses a set of constraints imposed on the left and right singular vectors of a single-matrix SVD.
In applied mathematics, k-SVD is a dictionary learning algorithm for creating a dictionary for sparse representations, via a singular value decomposition approach. k-SVD is a generalization of the k-means clustering method, and it works by iteratively alternating between sparse coding the input data based on the current dictionary, and updating the atoms in the dictionary to better fit the data.