Search results
Results from the WOW.Com Content Network
Among the first appearances of regular expressions in program form was when Ken Thompson built Kleene's notation into the editor QED as a means to match patterns in text files. [ 9 ] [ 11 ] [ 12 ] [ 13 ] For speed, Thompson implemented regular expression matching by just-in-time compilation (JIT) to IBM 7094 code on the Compatible Time-Sharing ...
Java has a Files class in the package java.nio.file, containing methods that can operate on glob patterns. [24] Haskell has a Glob package with the main module System.FilePath.Glob. The pattern syntax is based on a subset of Zsh's. It tries to optimize the given pattern and should be noticeably faster than a naïve character-by-character ...
Java Apache java.util.regex Java's User manual: Java GNU GPLv2 with Classpath exception jEdit: JRegex JRegex: Java BSD MATLAB: Regular Expressions: MATLAB Language: Proprietary Oniguruma: Kosako: C BSD Atom, Take Command Console, Tera Term, TextMate, Sublime Text, SubEthaEdit, EmEditor, jq, Ruby: Pattwo Stevesoft Java (compatible with Java 1.0 ...
re2c is a free and open-source lexer generator for C, C++, D, Go, Haskell, Java, JavaScript, OCaml, Python, Rust, V and Zig. It compiles declarative regular expression specifications to deterministic finite automata.
In computer science, pattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition, the match usually has to be exact: "either it will or will not be a match." The patterns generally have the form of either sequences or tree structures.
Regular languages are a category of languages (sometimes termed Chomsky Type 3) which can be matched by a state machine (more specifically, by a deterministic finite automaton or a nondeterministic finite automaton) constructed from a regular expression. In particular, a regular language can match constructs like "A follows B", "Either A or B ...
In computer science, Thompson's construction algorithm, also called the McNaughton–Yamada–Thompson algorithm, [1] is a method of transforming a regular expression into an equivalent nondeterministic finite automaton (NFA). [2] This NFA can be used to match strings against the regular expression.
Ragel's input is a regular expression only in the sense that it describes a regular language; it is usually not written in a concise regular expression, but written out into multiple parts like in Extended Backus–Naur form. For example, instead of supporting POSIX character classes in regex syntax, Ragel implements them as built-in production ...