Ads
related to: convex polygon shapes and sizes practiceeducation.com has been visited by 100K+ users in the past month
kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
An example of a convex polygon: a regular pentagon. In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). [1]
Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.
Convex polygon; Concave polygon; Constructible polygon; Cyclic polygon; ... Table of Shapes Section Sub-Section Sup-Section Name Algebraic Curves ¿ Curves ¿ Curves:
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:
Equivalently, a convex set or a convex region is a set that intersects every line in a line segment, single point, or the empty set. [1] [2] For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary of a convex set in the plane is always a convex curve.
In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain. These segments are called its edges or sides, and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners.
Convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis and discrete mathematics. [131] It has close connections to convex analysis, optimization and functional analysis and important applications in number theory. Convex geometry dates back to antiquity. [131]
Proper convex function - a convex function whose effective domain is nonempty and it never attains minus infinity. Concave function - the negative of a convex function. Convex geometry - the branch of geometry studying convex sets, mainly in Euclidean space. Contains three sub-branches: general convexity, polytopes and polyhedra, and discrete ...
Ads
related to: convex polygon shapes and sizes practiceeducation.com has been visited by 100K+ users in the past month
kutasoftware.com has been visited by 10K+ users in the past month