enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gabor wavelet - Wikipedia

    en.wikipedia.org/wiki/Gabor_wavelet

    The equation of a 1-D Gabor wavelet is a Gaussian modulated by a complex exponential, described as follows: [3] = / ()As opposed to other functions commonly used as bases in Fourier Transforms such as and , Gabor wavelets have the property that they are localized, meaning that as the distance from the center increases, the value of the function becomes exponentially suppressed.

  3. Wavelet - Wikipedia

    en.wikipedia.org/wiki/Wavelet

    The wavelets forming a continuous wavelet transform (CWT) are subject to the uncertainty principle of Fourier analysis respective sampling theory: [4] given a signal with some event in it, one cannot assign simultaneously an exact time and frequency response scale to that event. The product of the uncertainties of time and frequency response ...

  4. Wavelet transform - Wikipedia

    en.wikipedia.org/wiki/Wavelet_transform

    Wavelets have some slight benefits over Fourier transforms in reducing computations when examining specific frequencies. However, they are rarely more sensitive, and indeed, the common Morlet wavelet is mathematically identical to a short-time Fourier transform using a Gaussian window function. [ 13 ]

  5. Morlet wavelet - Wikipedia

    en.wikipedia.org/wiki/Morlet_wavelet

    The Morlet wavelet transform is used in pitch estimation and can produce more accurate results than Fourier transform techniques. [10] The Morlet wavelet transform is capable of capturing short bursts of repeating and alternating music notes with a clear start and end time for each note. [citation needed]

  6. Discrete wavelet transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_wavelet_transform

    In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time).

  7. Time–frequency analysis - Wikipedia

    en.wikipedia.org/wiki/Time–frequency_analysis

    Early work in time–frequency analysis can be seen in the Haar wavelets (1909) of Alfréd Haar, though these were not significantly applied to signal processing. More substantial work was undertaken by Dennis Gabor, such as Gabor atoms (1947), an early form of wavelets, and the Gabor transform, a modified short-time Fourier transform.

  8. Haar wavelet - Wikipedia

    en.wikipedia.org/wiki/Haar_wavelet

    The Haar wavelet. In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the ...

  9. Gabor transform - Wikipedia

    en.wikipedia.org/wiki/Gabor_transform

    The Gabor transform, named after Dennis Gabor, is a special case of the short-time Fourier transform.It is used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time.