Search results
Results from the WOW.Com Content Network
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...
Despite the newly abstract situation, this definition is extremely similar in nature to the very simplest definition of expected values, given above, as certain weighted averages. This is because, in measure theory, the value of the Lebesgue integral of X is defined via weighted averages of approximations of X which take on finitely many values ...
For example, some authors [6] define φ X (t) = E[e −2πitX], which is essentially a change of parameter. Other notation may be encountered in the literature: p ^ {\displaystyle \scriptstyle {\hat {p}}} as the characteristic function for a probability measure p , or f ^ {\displaystyle \scriptstyle {\hat {f}}} as the characteristic function ...
The polynomial S t can also be given the following "interpolation" characterization. Define e t (z) ≡ e tz, and n ≡ deg P. Then S t (z) is the unique degree < n polynomial which satisfies S t (k) (a) = e t (k) (a) whenever k is less than the multiplicity of a as a root of P. We assume, as we obviously can, that P is the minimal polynomial of A.
Like approximate entropy (ApEn), Sample entropy (SampEn) is a measure of complexity. [1] But it does not include self-similar patterns as ApEn does. For a given embedding dimension, tolerance and number of data points, SampEn is the negative natural logarithm of the probability that if two sets of simultaneous data points of length have distance < then two sets of simultaneous data points of ...
If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: = = = = (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
Yet series A is perfectly regular: knowing a term has the value of 1 enables one to predict with certainty that the next term will have the value of 0. In contrast, series B is randomly valued: knowing a term has the value of 1 gives no insight into what value the next term will have.