Search results
Results from the WOW.Com Content Network
The basic function of the xylem is to transport water upward from the roots to parts of the plants such as stems and leaves, but it also transports nutrients. [1] [2] The word xylem is derived from the Ancient Greek word, ξύλον (xylon), meaning "wood"; the best-known xylem tissue is wood, though it is found throughout a plant. [3]
Between the xylem and phloem is a meristem called the vascular cambium. This tissue divides off cells that will become additional xylem and phloem. This growth increases the girth of the plant, rather than its length. As long as the vascular cambium continues to produce new cells, the plant will continue to grow more stout.
English: xylem (blue) carries water from the roots upwards phloem (orange) carries products of photosynthesis from the place of their origin (source) to organs where they are needed (roots, storage organs, flowers, fruits – sink); note that e.g. the storage organs may be source and leaves may be sink at the beginning of the growing season
Xylem is the water-conducting tissue, and the secondary xylem provides the raw material for the forest products industry. [25] Xylem and phloem tissues each play a part in the conduction processes within plants. Sugars are conveyed throughout the plant in the phloem; water and other nutrients pass through the xylem.
The transport itself happens in the stem, which exists in two forms: xylem and phloem. Both these tissues are present in a vascular bundle, which in addition will include supporting and protective tissues. There is also a tissue between xylem and phloem, which is the cambium.
The ascent of sap in the xylem tissue of plants is the upward movement of water and minerals from the root to the aerial parts of the plant. The conducting cells in xylem are typically non-living and include, in various groups of plants, vessel members and tracheids.
The fascicular and interfascicular cambia thus join up to form a ring (in three dimensions, a tube) which separates the primary xylem and primary phloem, the cambium ring. The vascular cambium produces secondary xylem on the inside of the ring, and secondary phloem on the outside, pushing the primary xylem and phloem apart.
The presence of vessels in xylem has been considered to be one of the key innovations that led to the success of the flowering plants. It was once thought that vessel elements were an evolutionary innovation of flowering plants, but their absence from some basal angiosperms and their presence in some members of the Gnetales suggest that this hypothesis must be re-examined; vessel elements in ...