Search results
Results from the WOW.Com Content Network
The fuel consumption per mile or per kilometre is a more appropriate comparison for aircraft that travel at very different speeds. [citation needed] There also exists power-specific fuel consumption, which equals the thrust-specific fuel consumption divided by speed. It can have units of pounds per hour per horsepower.
The fuel economy in aircraft is the ... seat diesel-powered Cessna 182 for 1,000 ... engines mounted on the wing and driving generators powering ducted fans ...
The Cessna 172 Skyhawk is an American four-seat, single-engine, high wing, fixed-wing aircraft made by the Cessna Aircraft Company. [2] First flown in 1955, [2] more 172s have been built than any other aircraft. [3] It was developed from the 1948 Cessna 170 but with tricycle landing gear rather than conventional landing gear.
Lift and drag are the two components of the total aerodynamic force acting on an aerofoil or aircraft.. In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air.
The following table takes values as an example for the specific fuel consumption of several types of engines. For specific engines values can and often do differ from the table values shown below. Energy efficiency is based on a lower heating value of 42.7 MJ/kg (84.3 g/(kW⋅h)) for diesel fuel and jet fuel , 43.9 MJ/kg (82 g/(kW⋅h)) for ...
The O-320 family of engines includes the carbureted O-320, the fuel-injected IO-320, the inverted mount, fuel-injected AIO-320 and the aerobatic, fuel-injected AEIO-320 series. The LIO-320 is a "left-handed" version with the crankshaft rotating in the opposite direction for use on twin-engined aircraft to eliminate the critical engine .
The instantaneous thrust-to-weight ratio of a vehicle varies continually during operation due to progressive consumption of fuel or propellant and in some cases a gravity gradient. The thrust-to-weight ratio based on initial thrust and weight is often published and used as a figure of merit for quantitative comparison of a vehicle's initial ...
This imposes limitations on the amount of fuel carried and the order in which fuel must be used. Turbine engines burn fuel faster than reciprocating engines do. Because fuel needs to be injected in to a combustor, the injection system of a turbine aircraft must provide fuel at higher pressure and flow compared to that for a piston engine aircraft.