Search results
Results from the WOW.Com Content Network
ROM and RAM are essential components of a computer, each serving distinct roles. RAM, or Random Access Memory, is a temporary, volatile storage medium that loses data when the system powers down. In contrast, ROM, being non-volatile, preserves its data even after the computer is switched off. [2]
Writable variants of ROM (such as EEPROM and NOR flash) share properties of both ROM and RAM, enabling data to persist without power and to be updated without requiring special equipment. ECC memory (which can be either SRAM or DRAM) includes special circuitry to detect and/or correct random faults (memory errors) in the stored data, using ...
An additional advantage of ROM on some early PC systems (notably including the IBM PCjr) was that ROM was faster than main system RAM. (On modern systems, the case is very much the reverse of this, and BIOS ROM code is usually copied ("shadowed") into RAM so it will run faster.)
Computer memory stores information, such as data and programs, for immediate use in the computer. [2] The term memory is often synonymous with the terms RAM , main memory , or primary storage . Archaic synonyms for main memory include core (for magnetic core memory) and store .
Other examples of non-volatile memory include read-only memory (ROM), EPROM (erasable programmable ROM) and EEPROM (electrically erasable programmable ROM), ferroelectric RAM, most types of computer data storage devices (e.g. disk storage, hard disk drives, optical discs, floppy disks, and magnetic tape), and early computer storage methods such ...
All semiconductor memory, not just RAM, has the property of random access. DRAM (Dynamic random-access memory) – This uses memory cells consisting of one MOSFET (MOS field-effect transistor) and one MOS capacitor to store each bit. This type of RAM is the cheapest and highest in density, so it is used for the main memory in computers.
Dynamic random-access memory (dynamic RAM or DRAM) is a type of random-access semiconductor memory that stores each bit of data in a memory cell, usually consisting of a tiny capacitor and a transistor, both typically based on metal–oxide–semiconductor (MOS) technology. While most DRAM memory cell designs use a capacitor and transistor ...
A physical hard drive, optical (e.g, CD-ROM, DVD, and Blu-ray) or other media (e.g. magnetic bubble, acoustic storage, magnetic tape) must move the information to a particular position before reading or writing can occur. RAM drives can access data with only the address, eliminating this latency.