Search results
Results from the WOW.Com Content Network
convert a double to a float: d2i 8e 1000 1110 value → result convert a double to an int d2l 8f 1000 1111 value → result convert a double to a long dadd 63 0110 0011 value1, value2 → result add two doubles daload 31 0011 0001 arrayref, index → value load a double from an array dastore 52 0101 0010 arrayref, index, value →
This odd behavior is caused by an implicit conversion of i_value to float when it is compared with f_value. The conversion causes loss of precision, which makes the values equal before the comparison. Important takeaways: float to int causes truncation, i.e., removal of the fractional part. double to float causes rounding of digit.
One of the first programming languages to provide floating-point data types was Fortran. [citation needed] Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language implementers. E.g ...
There are three binary floating-point basic formats (encoded with 32, 64 or 128 bits) and two decimal floating-point basic formats (encoded with 64 or 128 bits). The binary32 and binary64 formats are the single and double formats of IEEE 754-1985 respectively. A conforming implementation must fully implement at least one of the basic formats.
Converting a double-precision binary floating-point number to a decimal string is a common operation, but an algorithm producing results that are both accurate and minimal did not appear in print until 1990, with Steele and White's Dragon4. Some of the improvements since then include:
Minifloats (in Survey of Floating-Point Formats) OpenEXR site; Half precision constants from D3DX; OpenGL treatment of half precision; Fast Half Float Conversions; Analog Devices variant (four-bit exponent) C source code to convert between IEEE double, single, and half precision can be found here; Java source code for half-precision floating ...
In single precision, the bias is 127, so in this example the biased exponent is 124; in double precision, the bias is 1023, so the biased exponent in this example is 1020. fraction = .01000… 2 . IEEE 754 adds a bias to the exponent so that numbers can in many cases be compared conveniently by the same hardware that compares signed 2's ...
The Java virtual machine's set of primitive data types consists of: [12] byte, short, int, long, char (integer types with a variety of ranges) float and double, floating-point numbers with single and double precisions; boolean, a Boolean type with logical values true and false; returnAddress, a value referring to an executable memory address ...