Search results
Results from the WOW.Com Content Network
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
where z is the electrical charge on the ion, I is the ionic strength, ε and b are interaction coefficients and m and c are concentrations. The summation extends over the other ions present in solution, which includes the ions produced by the background electrolyte. The first term in these expressions comes from Debye–Hückel theory.
The charge of the resulting ions is a major factor in the strength of ionic bonding, e.g. a salt C + A − is held together by electrostatic forces roughly four times weaker than C 2+ A 2− according to Coulomb's law, where C and A represent a generic cation and anion respectively. The sizes of the ions and the particular packing of the ...
The Debye–Hückel theory [7] was based on the assumption that each ion was surrounded by a spherical "cloud" or ionic atmosphere made up of ions of the opposite charge. Expressions were derived for the variation of single-ion activity coefficients as a function of ionic strength. This theory was very successful for dilute solutions of 1:1 ...
The polyelectrolyte film thickness is dependent upon its ionic strength. [13] charged species on polyelectrolyte chains repel each other, causing the chains to stretch out. As the salt concentration increases, ionic strength increases, and the ions will shield the charges on the polymer chain allowing the polymer chain to form a dense random ...
Most commonly, a solution containing the metal ion and the ligand in a medium of high ionic strength is first acidified to the point where the ligand is fully protonated. This solution is then titrated, often by means of a computer-controlled auto-titrator, with a solution of CO 2-free base.
The real goal is to reduce changes in the activity coefficients of ionic species which allows the definition of conditional equilibrium or rate constants. Any salt will affect the ionic strength, inert salts have the additional property that both the cations and the anions of the salt do or should not not interfere in any way with the molecules ...
Various processes are labeled on the image: ionic and dipolar relaxation, and atomic and electronic resonances at higher energies. [9] As opposed to the response of a vacuum, the response of normal materials to external fields generally depends on the frequency of the field. This frequency dependence reflects the fact that a material's ...