enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ionic strength - Wikipedia

    en.wikipedia.org/wiki/Ionic_strength

    The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.

  3. Specific ion interaction theory - Wikipedia

    en.wikipedia.org/wiki/Specific_ion_interaction...

    where z is the electrical charge on the ion, I is the ionic strength, ε and b are interaction coefficients and m and c are concentrations. The summation extends over the other ions present in solution, which includes the ions produced by the background electrolyte. The first term in these expressions comes from Debye–Hückel theory.

  4. Pitzer equations - Wikipedia

    en.wikipedia.org/wiki/Pitzer_equations

    The Debye–Hückel theory [7] was based on the assumption that each ion was surrounded by a spherical "cloud" or ionic atmosphere made up of ions of the opposite charge. Expressions were derived for the variation of single-ion activity coefficients as a function of ionic strength. This theory was very successful for dilute solutions of 1:1 ...

  5. Total ionic strength adjustment buffer - Wikipedia

    en.wikipedia.org/wiki/Total_ionic_strength...

    Total ionic strength adjustment buffer (TISAB) is a buffer solution which increases the ionic strength of a solution to a relatively high level. This is important for potentiometric measurements, including ion selective electrodes , because they measure the activity of the analyte rather than its concentration.

  6. Emulsion stabilization using polyelectrolytes - Wikipedia

    en.wikipedia.org/wiki/Emulsion_stabilization...

    The polyelectrolyte film thickness is dependent upon its ionic strength. [13] charged species on polyelectrolyte chains repel each other, causing the chains to stretch out. As the salt concentration increases, ionic strength increases, and the ions will shield the charges on the polymer chain allowing the polymer chain to form a dense random ...

  7. Ionic bonding - Wikipedia

    en.wikipedia.org/wiki/Ionic_bonding

    The charge of the resulting ions is a major factor in the strength of ionic bonding, e.g. a salt C + A − is held together by electrostatic forces roughly four times weaker than C 2+ A 2− according to Coulomb's law, where C and A represent a generic cation and anion respectively. The sizes of the ions and the particular packing of the ...

  8. Inert salt - Wikipedia

    en.wikipedia.org/wiki/Inert_salt

    The real goal is to reduce changes in the activity coefficients of ionic species which allows the definition of conditional equilibrium or rate constants. Any salt will affect the ionic strength, inert salts have the additional property that both the cations and the anions of the salt do or should not not interfere in any way with the molecules ...

  9. DLVO theory - Wikipedia

    en.wikipedia.org/wiki/DLVO_theory

    In 1923, Peter Debye and Erich Hückel reported the first successful theory for the distribution of charges in ionic solutions. [7] The framework of linearized Debye–Hückel theory subsequently was applied to colloidal dispersions by S. Levine and G. P. Dube [8] [9] who found that charged colloidal particles should experience a strong medium-range repulsion and a weaker long-range attraction.