enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. A foolproof guide to image manipulation in Python with OpenCV

    www.aol.com/foolproof-guide-image-manipulation...

    OpenCV is a huge image and video processing library designed to work with many languages such as python, C/C++, Java, and more. It is the foundation for many of the applications you know that deal ...

  3. OpenCV - Wikipedia

    en.wikipedia.org/wiki/OpenCV

    OpenCV (Open Source Computer Vision Library) is a library of programming functions mainly for real-time computer vision. [2] Originally developed by Intel, it was later supported by Willow Garage, then Itseez (which was later acquired by Intel [3]).

  4. Kernel (image processing) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(image_processing)

    In image processing, a kernel, convolution matrix, or mask is a small matrix used for blurring, sharpening, embossing, edge detection, and more.This is accomplished by doing a convolution between the kernel and an image.

  5. Python Imaging Library - Wikipedia

    en.wikipedia.org/wiki/Python_Imaging_Library

    Python Imaging Library is a free and open-source additional library for the Python programming language that adds support for opening, manipulating, and saving many different image file formats. It is available for Windows, Mac OS X and Linux. The latest version of PIL is 1.1.7, was released in September 2009 and supports Python 1.5.2–2.7. [3]

  6. Image moment - Wikipedia

    en.wikipedia.org/wiki/Image_moment

    In image processing, computer vision and related fields, an image moment is a certain particular weighted average of the image pixels' intensities, or a function of such moments, usually chosen to have some attractive property or interpretation. Image moments are useful to describe objects after segmentation.

  7. Otsu's method - Wikipedia

    en.wikipedia.org/wiki/Otsu's_method

    In computer vision and image processing, Otsu's method, named after Nobuyuki Otsu (大津展之, Ōtsu Nobuyuki), is used to perform automatic image thresholding. [1] In the simplest form, the algorithm returns a single intensity threshold that separate pixels into two classes, foreground and background.

  8. Albumentations - Wikipedia

    en.wikipedia.org/wiki/Albumentations

    Built on top of OpenCV, a widely used computer vision library, Albumentations provides high-performance implementations of various image processing functions. It also offers a rich set of image transformation functions and a simple API for combining them, allowing users to create custom augmentation pipelines tailored to their specific needs. [3]

  9. Template matching - Wikipedia

    en.wikipedia.org/wiki/Template_matching

    Template matching [1] is a technique in digital image processing for finding small parts of an image which match a template image. It can be used for quality control in manufacturing, [2] navigation of mobile robots, [3] or edge detection in images.