Search results
Results from the WOW.Com Content Network
The 80-bit floating-point format was widely available by 1984, [25] after the development of C, Fortran and similar computer languages, which initially offered only the common 32- and 64-bit floating-point sizes. On the x86 design most C compilers now support 80-bit extended precision via the long double type, and this was specified in the C99 ...
Single-precision floating-point format (sometimes called FP32 or float32) is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit ...
The x86 instruction set refers to the set of instructions that x86-compatible microprocessors support. The instructions are usually part of an executable program, often stored as a computer file and executed on the processor. The x86 instruction set has been extended several times, introducing wider registers and datatypes as well as new ...
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
The 80386 had an optional floating-point coprocessor, the 80387; it had eight 80-bit wide registers: st(0) to st(7), [32] like the 8087 and 80287. The 80386 could also use an 80287 coprocessor. [33] With the 80486 and all subsequent x86 models, the floating-point processing unit (FPU) is integrated on-chip.
In computing, half precision (sometimes called FP16 or float16) is a binary floating-point computer number format that occupies 16 bits (two bytes in modern computers) in computer memory. It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks.
x86 assembly language includes instructions for a stack-based floating-point unit (FPU). The FPU was an optional separate coprocessor for the 8086 through the 80386, it was an on-chip option for the 80486 series, and it is a standard feature in every Intel x86 CPU since the 80486, starting with the Pentium.
IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2] During its 23 years, it was the most widely used format for floating-point computation.