enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions , vectors , matrices , polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

  3. Automatic summarization - Wikipedia

    en.wikipedia.org/wiki/Automatic_summarization

    Abstractive summarization methods generate new text that did not exist in the original text. [12] This has been applied mainly for text. Abstractive methods build an internal semantic representation of the original content (often called a language model), and then use this representation to create a summary that is closer to what a human might express.

  4. Sum - Wikipedia

    en.wikipedia.org/wiki/Sum

    Sum (category theory), the generic concept of summation in mathematics; Sum, the result of summation, the addition of a sequence of numbers; 3SUM, a term from computational complexity theory; Band sum, a way of connecting mathematical knots; Connected sum, a way of gluing manifolds; Digit sum, in number theory; Direct sum, a combination of ...

  5. Abel's summation formula - Wikipedia

    en.wikipedia.org/wiki/Abel's_summation_formula

    Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...

  6. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  7. Summation (neurophysiology) - Wikipedia

    en.wikipedia.org/wiki/Summation_(neurophysiology)

    Summation, which includes both spatial summation and temporal summation, is the process that determines whether or not an action potential will be generated by the combined effects of excitatory and inhibitory signals, both from multiple simultaneous inputs (spatial summation), and from repeated inputs (temporal summation).

  8. Cesàro summation - Wikipedia

    en.wikipedia.org/wiki/Cesàro_summation

    In mathematical analysis, Cesàro summation (also known as the Cesàro mean [1] [2] or Cesàro limit [3]) assigns values to some infinite sums that are not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as n tends to infinity, of the sequence of arithmetic means of the first n partial sums of the series.

  9. Summary statistics - Wikipedia

    en.wikipedia.org/wiki/Summary_statistics

    In descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible. Statisticians commonly try to describe the observations in