Search results
Results from the WOW.Com Content Network
DESeq2 is a software package in the field of bioinformatics and computational biology for the statistical programming language R. It is primarily employed for the analysis of high-throughput RNA sequencing (RNA-seq) data to identify differentially expressed genes between different experimental conditions.
In morphology and lexicography, a lemma is the canonical form of a set of words. In English, for example, run, runs, ran, and running are forms of the same lexeme, so we can select one of them; ex. run, to represent all the forms. Lexical databases such as Unitex use this kind of representation.
fastqp Simple FASTQ quality assessment using Python. Kraken: [9] A set of tools for quality control and analysis of high-throughput sequence data. HTSeq [10] The Python script htseq-qa takes a file with sequencing reads (either raw or aligned reads) and produces a PDF file with useful plots to assess the technical quality of a run.
Text normalization is the process of transforming text into a single canonical form that it might not have had before. Normalizing text before storing or processing it allows for separation of concerns, since input is guaranteed to be consistent before operations are performed on it. Text normalization requires being aware of what type of text ...
The effect of z-score normalization on k-means clustering. 4 gaussian clusters of points are generated, then squashed along the y-axis, and a = clustering was computed. Without normalization, the clusters were arranged along the x-axis, since it is the axis with most of variation. After normalization, the clusters are recovered as expected.
Normalizing moments, using the standard deviation as a measure of scale. Coefficient of variation: Normalizing dispersion, using the mean as a measure of scale, particularly for positive distribution such as the exponential distribution and Poisson distribution.
Context-free languages are a category of languages (sometimes termed Chomsky Type 2) which can be matched by a sequence of replacement rules, each of which essentially maps each non-terminal element to a sequence of terminal elements and/or other nonterminal elements.
In a neural network, batch normalization is achieved through a normalization step that fixes the means and variances of each layer's inputs. Ideally, the normalization would be conducted over the entire training set, but to use this step jointly with stochastic optimization methods, it is impractical to use the global information.